

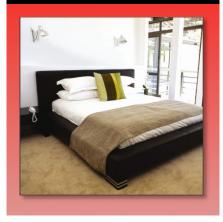
# The Challenge of Taking a New Idea into a Commercial Business

The Story of the Dow POWERHOUSE Solar Shingle

William F. Banholzer Executive Vice President and Chief Technology Officer March 25, 2011

# Global Megatrends








**ENERGY** 



CONSUMERISM



TRANSPORTATION & INFRASTRUCTURE



## Deciding What to Work On



What is the material & energy balance?

What is the cost? Is it sustainable?

Have we defined proper control volumes?

What are the TECHNICAL risks? MARKET risks?

- Once you decide on a pathway
  - failure is NOT an option!



For a successful technology, reality must take precedence over public relations, for Nature cannot be fooled.

- Richard Feynman



# Dow chooses to operate where materials science expertise drives success

# **Energy Storage**



#### **Superior Materials:**

Cathode
Anode
Electrolytes
Separator

# Water Purification

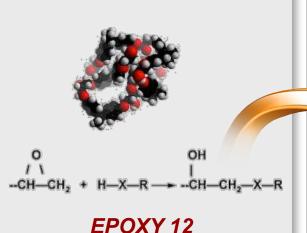


#### **Superior Materials:**

Energy efficiency improvements for reverse osmosis and ultra-filtration separations.

# **Energy Generation**



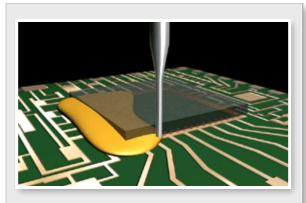

#### **Superior Materials:**

Balance Of Systems
Aesthetics
Performance
Durability

# Size is a Competitive Advantage



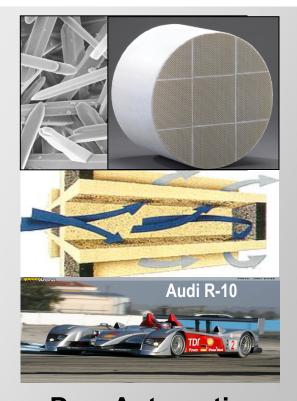
- Ultra low viscosity
- High heat resistance
- Hydrocarbon based




Unique Building Blocks



Dow Epoxy Systems
Performance
Products






**Chip Underfill Formulated Products** 

# R&D Interests – Energy and the Environment





Dow Automotive Systems: AERIFY™ Diesel Particulate Filters





Dow Building & Construction: Energy Efficient Roof & Wall Solutions

## Potential for Solar



| Solar Capture Process      | W/m² | Efficiency |
|----------------------------|------|------------|
| Sugar Cane to Ethanol      | 0.60 | 0.30%      |
| Energy Crop - Fermentation | 0.70 | 0.32%      |
| US Corn to Ethanol (gross) | 0.32 | 0.16%      |
| Algenol                    | 4.0  | 2.0%       |
| Wind Farm                  | 4.0  | 2.0%       |
| Concentrated Solar         | 3.2  | 1.6%       |
| PV cell (10%)              | 20   | 10%        |



"I'd put my money on the sun and solar energy. What a source of power! I hope we don't have to wait until oil and coal run out before we tackle that."

Thomas Edison 1931



# Issues: •Intermittency •Cost

# Dow Participation in Solar



- PEG cutting fluids
- Ethylcellulose paste binder
- Cleaning fluids & slurries
- Light induced plating
- Flexible front sheet materials
- EVA replacements
- Back sheet materials
- Adhesives
- Printed metallization
- Liquid acrylics
- Thermoplastics,
- UV curable liquid encapsulants
- Ion exchange resin
- HTTF for distillation & reduction
- Ultra pure water & waste water treatment
- Polycrystalline silicons
- Monosilane gas for thin films

DOW CORNING



#### **BIPV**

CIGS

Printed metallization

- TCOs for point contact
- Barrier layers
- CIGs inks
- Epoxies
- Adhesives
- Performance plastics
- XL EVA encapsulant films





High Temperature Thermal Fluids
Epoxies

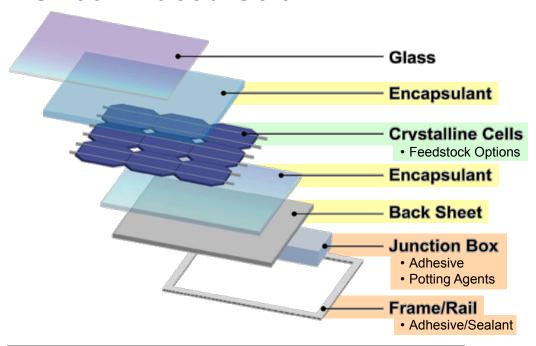
**CSP** 

## Dow CSP



#### Concentrated Solar Power




# **DOWTHERM™ A Heat Transfer Fluid**

- Established relationships with important system OEMs
- Proven ability to deliver high volumes to remote locations
- Back integration to key raw materials

Addressable Market: 5,000 MW by 2020

Generating 400 MW of power in Spain and North America Supplying 250,000 homes with electrical power Reducing carbon emissions by 800,000 MT annually

#### Silicon Based Solar



#### **Crystalline Polysilicon Cells**

- 6 decades of proven performance
- World class IP
- HSC is leading world supplier

\$3,200 MM/year market 20% annual growth



# Dow PV Encapsulants & Backsheets

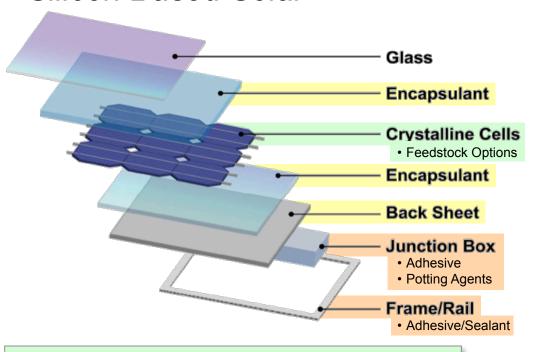
- UV resistance
- Electrical resistivity
- Reduced water transmission
- Chemical stability

\$500 MM/year market 30% annual growth \$1B by 2011

# Silicones: Durable & Transparent

- Frame sealing/bonding
- Structural bonding
- Junction box potting agents
- Adhesives




Encapsulation



## Alternative Sources



#### Silicon Based Solar



#### **Crystalline Polysilicon Cells**

- 6 decades of proven performance World class IP
- HSC is leading world supplier

\$3,200 MM/year market 20% annual growth

DOW CORNING

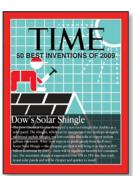
# Dow PV Encapsulants & Backsheets

- **UV** resistance
- Electrical resistivity
- Reduced water transmission
- Chemical stability

\$500 MM/year market 30% annual growth \$1B by 2011

# Silicones: Durable & Transparent

- Frame sealing/bonding Structural bonding
- Junction box potting agents
- Adhesives


Encapsulation



# **Dow BIPV**











NEW addressable market: ~\$5B by 2015 compared to ~\$1B for niche PV

# Solar – The Same Challenges



#### PV cells alone do not make a business

#### **SOLYNDRA** received:

More than **\$1** billion from venture capital

\$535 million from DOE





**\$59** *million* in revenue **\$108 million** of costs of goods sold 17.2MW of CIGS panels shipped

| GREENTECH IPOS WITHDRAWN |                   |                         |  |
|--------------------------|-------------------|-------------------------|--|
| Firm                     | Sector            |                         |  |
| Dago New Energy          | Solar Poly        | IPO withdrawn Jan 2010  |  |
| Solyndra                 | CIGS solar panels | IPO withdrawn June 2010 |  |
| Trony Solar              | a-Si solar        | IPO withdrawn Aug 2010  |  |

http://www.greentechmedia.com

Greentech IPO Report: Past, Present and Top Ten IPO Candidates August 16: 2010 http://seekingalpha.com/article/211350-lessons-from-solyndra-s-failed-ipo Lessons From Solyndra's failed IPO, Greentech Media

#### Thin films - a challenging space

Excluding First Solar there are now 170 companies in the sector and more than \$2 billion invested over 2 years timeframe.



< 100MW sold in 2008













www.gtmresearch.com/report/thin-film-2010-market-outlook-to-2015 www.renewableenergyworld.com/rea/blog/post/2010/05/whats-coming-for-solar-thin-film

http://www.nrel.gov/analysis/pdfs/46025.pdf

# Major Obstacles to Residential BIPV Adoption





#### **SunPower**

- •Cost = \$7.50-9.00/Watt installed
- •Requires premium s-tiles/ concrete roofing tiles

#### **Atlantis SunSlate**

•Cost = \$13-\$15/Watt

•Requires premium roofing slates •Heavy (Si panels + fiber cement slate)

Labor intensive



# Roof Integrity/Warranty





## Installation Complexity





# Aesthetics



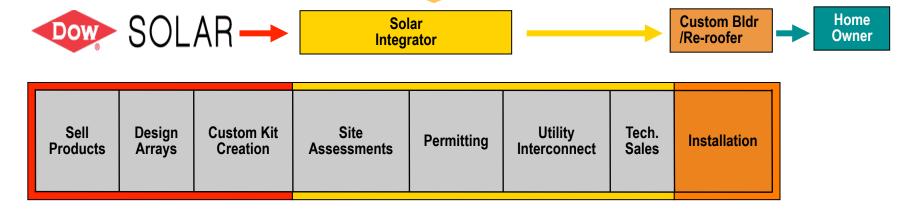
# **Head to Head Competition**





# The Challenges of Supply




#### Channel Selection

Builder Direct,
Building Material Distributor,
Solar Integrator

#### Markets Selection

Reroofing, Retrofit, Commercial, Residential, New Construction

# **Example: Solar Integrator / Residential New Construction**



**Requires:** New Supply Chain (Packaging, Order Logistics)
Define Sales Location, Product Claims, Warranty, Product Awareness,
Regional Codes & Standards, Installation Guides, Inverter Selection,
Training, Data Monitoring Selection, etc....

## Codes and Standards



**MIAMI DAMP HEAT** 



**MIDLAND SNOW & ICE** 



PHOENIX DRY HEAT



Thousands of In-house and Agency Tests 300,000 Man Hours Of Engineering Building, Safety, and Performance Codes











Underwriters Laboratories





UL790 TEST CLASS A BEST RATING



**HANDLING & INSTALLATION** 



HAIL & INCLEMENT WEATHER

0445 Plastics 0443 (PV) UL 790 UL 746 TAS 100-95 UL1897 UL 514 ASTM D635 ASTM E1929 UL 1703 IEC 61646 ASTM DS2843 ASTM DS2843



Success...

Or Failure?





20 year life product **Generates profit Excellent roofing properties Excellent electricity generation** Strong consumer demand



## Reliable Process and Product Design



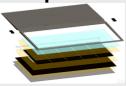




1 Grid tied array

#### Sub-system



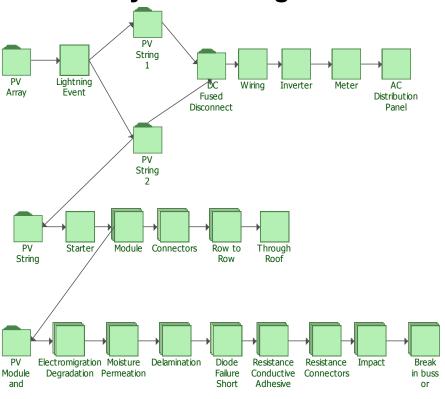

1 Inverter

10's End pieces

100's Power electronics

100's of Shingles

#### Component




100's of connections

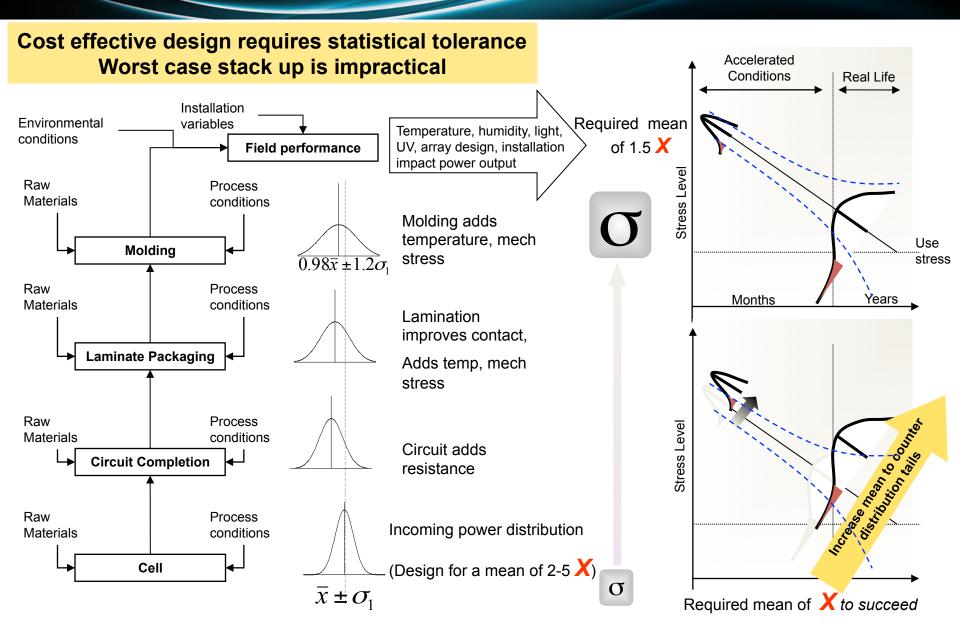
1000's welds

1000's of discrete pieces

#### **Reliability Block Diagram**



System Reliability


Component x Sub-system Reliability

Reliability

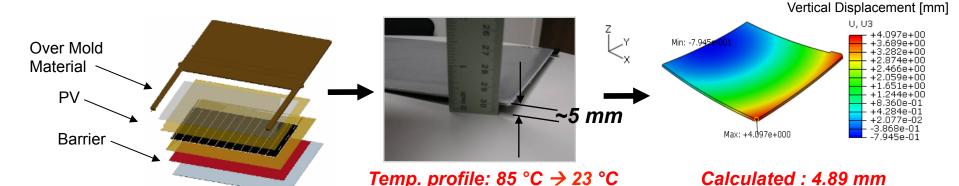
Robust Design for noise variables like environment and installation

## Reliable Process and Product Design





# Challenges of Material Design and Selection




#### **Materials Challenges**

- Over 20 Materials With Different Material Properties
- Over 40 Interfaces Of Materials
- Over 15 Assembly Steps

#### **Material Properties & Design**

Modulus, CTE, Density, Elastic/Plastic Properties, Fatigue, Aging Properties, Interface Properties...etc Temperature, Stress, Strain, design...



**Understanding design-material interaction** 

### Minimizing Warpage Through FEA

$$\frac{\partial T_{ij}}{\partial x_j} = \frac{\partial T_{ij}}{\partial X_k} \frac{\partial X_k}{\partial x_j} = 0$$

$$E_{ij} = \frac{1}{2} \left( \frac{\partial u_i}{\partial X_j} + \frac{\partial u_j}{\partial X_i} + \frac{\partial u_k}{\partial X_i} \frac{\partial u_k}{\partial X_j} \right)$$

$$u_i = x_i - X_i$$

**Equilibrium** 

Strain

Displacement

Energy (work) Balance On Multiple Layers

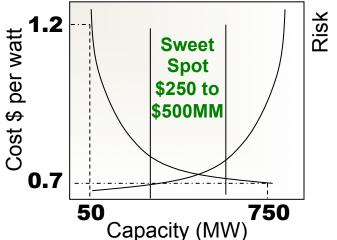
$$\int_{S} t_{i} \delta u_{i} dS + \int_{V} f_{i} \delta u_{i} dV = \int_{V} T_{ij} \delta E_{ij} dV$$

$$\text{Traction} \qquad \text{Body}$$

$$\text{Force} \qquad \text{Force}$$

# The Challenges in Building a Plant

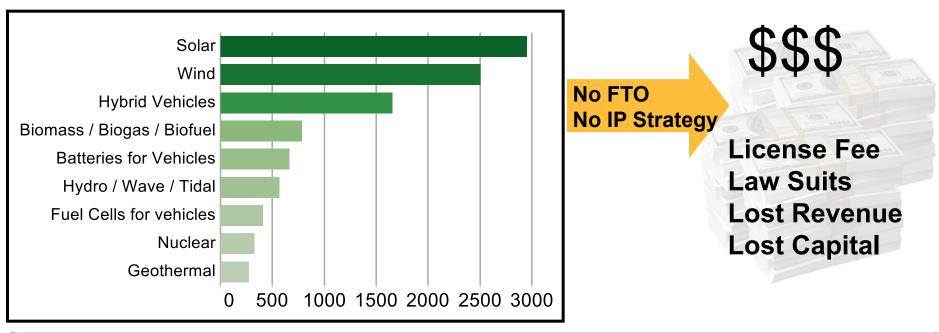



#### **Major Considerations**

- Clear Business Case and Alignment
- Project Staffing
- Site Selection
- Permitting
- Front End Loading
- Subject Matter Expert Input
- Risk Assessment & Mitigation Planning
- IPA Project Reviews
- Estimating and Schedule Management
- Construction Safety Management
- Start Up Budget and Staffing Plan



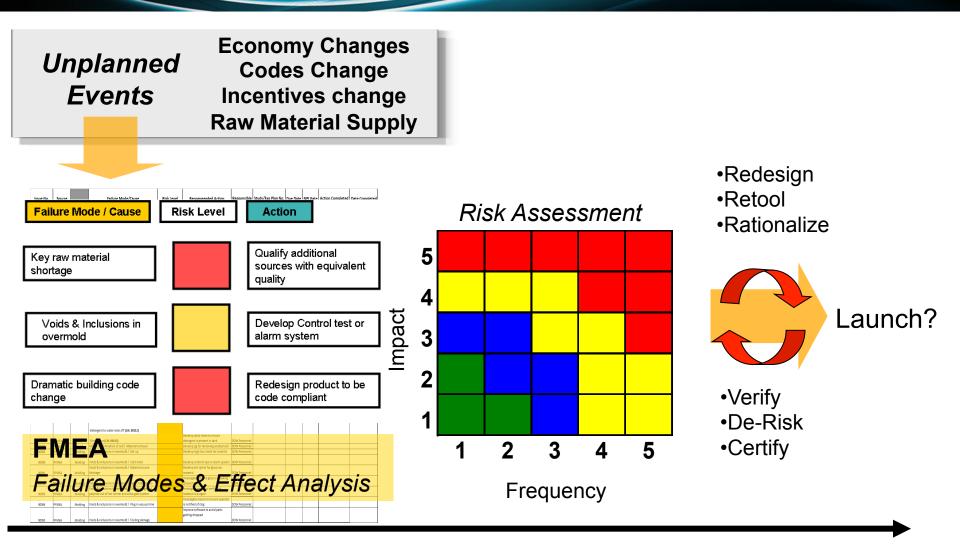
#### **Determine Size and Risk**


- Larger capacity of first plant means:
  - Low module cost
- -Lower flexibility
- Standardization
- -Higher capital
- -Higher risk
- -Higher base cost



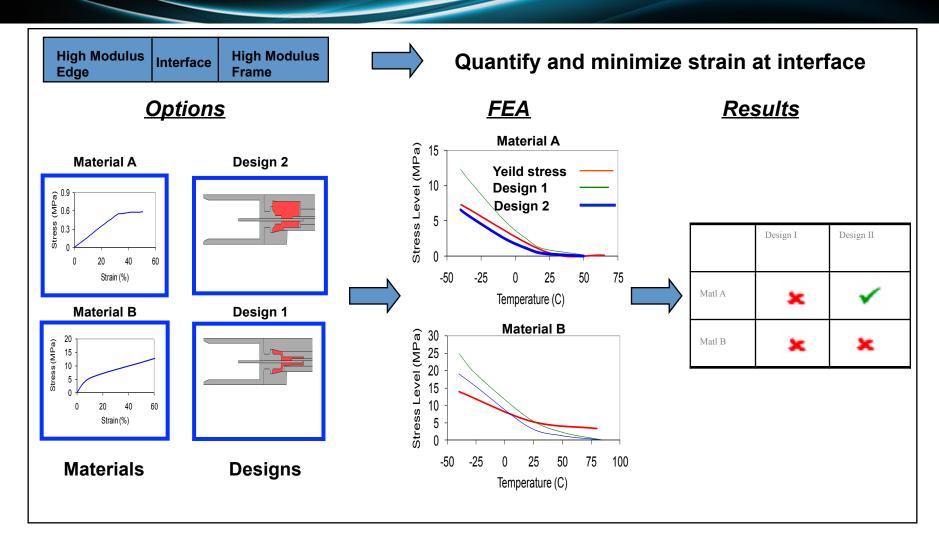
# Intellectual Property Strategy – A Must




#### Over 2,800 Solar Claims Allowed In 2008



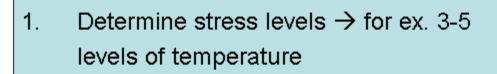
For a <u>single product</u>, Freedom to Operate and IP Requirements include:
30-40 patents
5 man years or more of effort
\$650MM in filing and Freedom to Operate
\$10MM in Maintenance Fees over 20 Years


# What Else Can Go Wrong?





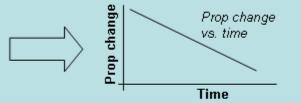
## Stress Reduction at the Interfaces



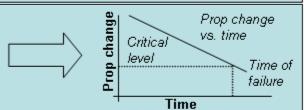



**Explore Design-Material space to reduce stress at critical interface** 

# Calculating Acceleration Factors





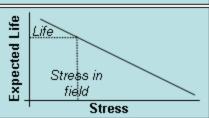

- •Temp range → 65-125 C
- Temp interval → 15 C

Calculate property change vs. time at each stress level



 Determine failure point at each stress level & calculate time to failure at each stress level

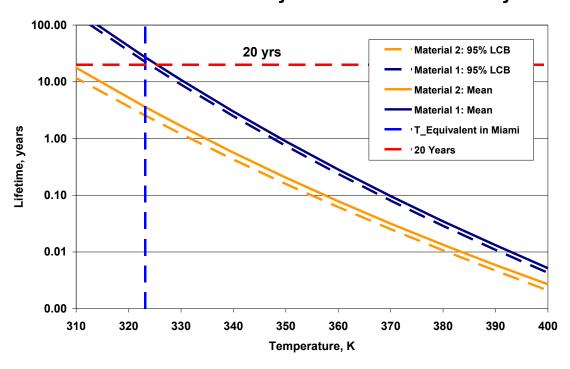



 Determine equivalent field stress for representative time period → for ex 1 yr



- Sum degradation using field data
- Calculate equivalent exposure stress

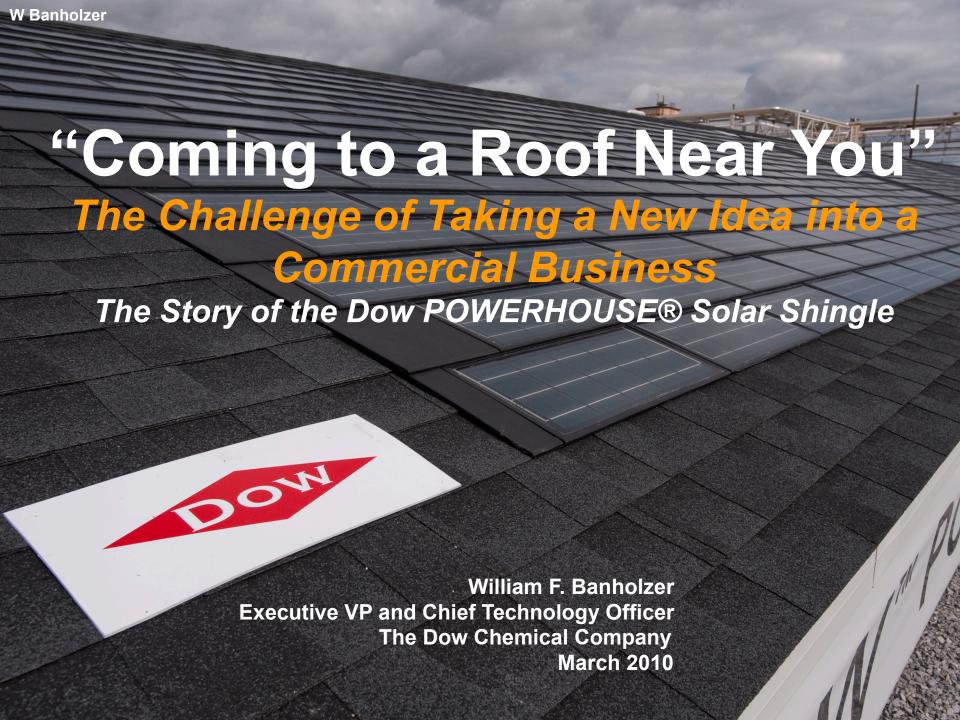
 Estimate time to failure at equivalent field stress based on step 4






# Hydrostable Material Selection




#### Material lifetime analysis at 99.9999% reliability



- Tests conducted under multiple accelerated conditions of temperature and humidity
- Failure defined as 50% property change
- Acceleration factor calculated based on the time to failure at each stress condition
- Performance of material 1 inadequare
- Confidence bounds at real stress wide → Handled for material 2 by shifting the mean

Component level testing used successfully to mitigate material degradation risk in product



