The World Needs Engineering Judgment

William F. Banholzer AIChE Meeting March 2014

Chemical Engineering Impact

UNIVERSITY OF WISCONSIN–MADISON

Rules for Business

Relative Source of Profit

There is NO Entitlement....

Top US Chemical Companies 1970

Rank '69 '68	Company	Chemi- cal sales (Millions	Total revenues ^a of dollars)	Chemical sales as per cent of total revenues	Com- pany SIC class. ^b	After-tax earnings ^c (Millions of dollars)	Profit margin ^d T	, Ra '69 OTA	nk '68 L C C	Return on invest- ment MPANIES	Ra '69	n k '68
1 1	Du Ponti Bio	\$3220	\$3,655	88%	281	\$343.5	9.4%	4	3	5.6%	7	4
2 3	Union Carbide	1815	2,933	62	281	186.2	6.4	18	24	3.2	36	42
-32	Monsanto Bio/Rest.	1735	1,939	89	281	109.4	5.6	26	22	3.3	34	33
4 4	Dow Chemical	1570	1,876	84	281	148.7	7.9	10	12	4.7	15	19
57-	- Celanese		1,250		281	76.3	6-1	- 22	-34		- 29	-45
6 5	W. R. Grace	1015	1,812	56	281	51.0	2.8	45	45	2.8	40	41
7 6	Standard Oil (N.J.)	1004	16,900	6	291	1243	7.4	12	9	5.1	11	9
8 8	Allied Chemical	895	1,316	68	281	68.0	5.2	30	46	2.7	41	48
99	Hercules	642	746	86	281	43.9	5.9	24	14	4.1	26	12
10 11	Occidental Petroleum	625	2,059	30	509	174.8	8.5	7	14	7.3	3	3
11 10	FMC	620	1,409	44	-281	67.3	4.8	32	29	5.0	13	6
12 12	American Cyanamid	576	1,067	53	281	89.9	8.3	8	5	6.2	6	5
13 13	Shell Oil	544	4,276	13	291	291.2	6.8	15	10	4.2	21	18
14 14	Eastman Kodak	522	2,747	19	383	401.1	14.6	1	1	10.5	1	1
15 16	Uniroyal	513 ^g	1,554	33	301	46.6	3.0	44	40	2.7	41	31
16 15	Stauffer Chemical	499	499	100	281	31.6	6.5	17	17	7.2	4	9
17 - 17 -	- Phillips Petroleum	471-	2,227	21	291	134.3	6.0	-23-	-19-	3.2	- 36	-35
18 18	Rohm and Haas	448	453	99	281	33.5	7.4	12	8	4.8	-14	- 9
19 19	Mobil Oil	444	7,573	6	291	434.5	5.7	25	22	4.4	17	22
2 0 21	Borden	394	1,756	23	202	47.9	2.7	46	47	4.2	21	24
21 26	Ethyl Corp.	382	517	74	281	33.0	6.4	18	20	4.3	20	19
22 20	Cities Service	361	1,595	23	291	127.2	8.0	9	5	4.0	27	26
23 23	Ashland Oil	342	1,151	30	291	52.3	4.5	34	32	4.4	17	15
24 28	Diamond Shamrock	327	555	59	281	30.7	5.5	28	17	3.2	36	-30
25 - 24 -	- Continental Oil		2,607			146-4	5.6	-26-	-21 -		- 30-	-24-

Engineering Triumph

Moore's Law Sets Unrealistic Expectations

Experience Curves

Adapted from Riahi et al., Energy Economics 26 (2004) 539-564.

Scale Improves Efficiency

UNIVERSITY OF WISCONSIN-MADISON

Engineering Fundamentals - Scale

150

Small Distributed Plants costly In Chemical/Energy Industry. Scale reduces the cost of production when materials are consumed or produced.

William Banholzer

UNIVERSITY OF WISCONSIN–MADISON

Separation Cost Significant

Energy Use

Ethane Cracker Specific Energy Consumption Alternatives

Membrane Separations

Adsorbent Separations

We Are Poor Judges of the Energy We Use

Attari. Sjajzeem Z.; DeKay, Michael L.; Davidson, Cliff I.; de Bruin Wandi Bruine; "Public Perceptions of Energy Consumption and Savings", PNAS doi 10.1073/pnas.1001509107

Energy Perception and Reality

William Banholzer

UNIVERSITY OF WISCONSIN-MADISON

People Don't Always Make Smart Choices

Ripe for Hype

Hype Around Cleantech

Ivy League Brains Figure Out How to Make Biodegradable Plastic from Greenhouse Gases

September 28, 2012 cleantechnica.com Two graduates from Princeton University and Northwestern University have developed a process for converting greenhouse gases from sewage treatment plants, landfills, and power plants into a biodegradable plastic called Airflex[™]

As described by Newlight, the process for making Airflex [™] breaks down into a few simple steps. First, a mix of gases, including methane and carbon dioxide, is funneled into a reactor. Next, carbon and oxygen are separated out, and then they are reassembled into a long-chain thermopolymer.

September 25, 2012 presswire.com "We are pleased to receive this seventh patent," stated Newlight CEO, Mark Herrema . "While the size of our patent portfolio is a testament to Newlight's pioneering inventions and nearly decade-long leadership in this field, we expect our patent portfolio to continue to grow at a rapid pace, particularly in the areas of new product applications and commercial-scale manufacturing systems."

Permanent Exhalation Conveyance

DOE Estimates

UNIVERSITY OF WISCONSIN–MADISON

Technical Evaluation- LumiGrow

LumiGrow LED technology is instrumental to the operation of Algae Farm's algae biomass production system, which will produce algae for the nutraceutical, cosmetic and <u>renewable energy</u> <u>market sectors</u>. By growing in a climate-controlled indoor environment, Algae Farm can achieve predictable and scalable yields while it maintains the highest purity standards.

LumiGrow press release "Algae Farm Selects LumiGrow LED Horticultural Lighting November 29, 2011

Photon's VERY Expensive Reagents

Algae Fuel Production

Scientists Turn Algae Into Crude Oil In Less Than An Hour

Researchers believe they have figured out a way to make a promising biofuel that is cheap enough to compete with gasoline

By Tuan C. Nguyen SMITHSONIANMAG.COM DECEMBER 31, 2013

🚅 1.3K 💟 69 🚳 0 👰 4 🎇 146 🖂 6 👰 2.2K 🗎

ut of all the clean energy options in development, it is algae-based biofuel that most closely resembles the composition of the crude oil that gets pumped out from beneath the sea bed. Much of what we know as petroleum was, after all, formed from these very microorganisms, through a natural heat-facilitated conversion that played out over the course of millions of years.

Now, researchers at the U.S. Department of Energy's Pacific Northwest National Laboratory in Richland, Washington, have discovered a way to not only replicate, but speed up this "cooking" process to the point where a small mixture of algae and water can be turned into a kind of crude oil in less than an hour. Besides being readily able to be refined into burnable gases like jet fuel, gasoline or diesel, the proprietary technology also generates, as a byproduct, chemical elements and minerals that can be used to produce electricity, natural gas and even fertilizer to, perhaps, grow even more algae. It could also help usher in algae as a viable alternative; an analysis has shown that implementing this technique on a wider scale may allow companies to sell biofuel commercially for as low as two dollars a gallon.

http://www.smithsonianmag.com/innovation/scientiststurn-algae-into-crude-oil-in-less-than-an-hour-180948282/?no-ist

Algae Fuel Production- The reality

What is affordable?

Assumptions:

- 12% Photosynthetic Efficiency (3X best demonstrate)
- 185 W/m² Solar Flux Temperate Climate
- \$21/mBTU Fuel (\$2.8 gal)

\$14/m²-yr Potential Rev Ignoring Operating Cost

Plastic Greenhouse Capital ~\$64/m² 4.5 Yr payback best case – theortical 20Yr with 2.5 % Photosynthesis Eff. >>20 year with nutrient, liquid/gas handling and separation/purification

Return on Energy Invested

Suggested reading: Guilford, M.C.; Hall; O'Conner, P.; Cleveland, C.J. A New Long Term Assessment of Energy Return on Investment (EROI) for U.S. Oil and Gas Discovery and Production. Sustainability 2011, 3(10), 1866-1867.

William Banholzer

UNIVERSITY OF WISCONSIN-MADISON

Nanotubes for Desalination

Fast Mass Transport Through Sub–2-Nanometer Carbon Nanotubes

Jason K. Holt,^{1*} Hyung Gyu Park,^{1,2*} Yinmin Wang,¹ Michael Stadermann,¹ Alexander B. Artyukhin,¹ Costas P. Grigoropoulos,² Aleksandr Noy,¹ Olgica Bakajin¹†

We report gas and water flow measurements through microfabricated membranes in which aligned carbon nanotubes with diameters of less than 2 nanometers serve as pores. The measured gas flow exceeds predictions of the Knudsen diffusion model by more than an order of magnitude. The measured water flow exceeds values calculated from continuum hydrodynamics models by more than three orders of magnitude and is comparable to flow rates extrapolated from molecular dynamics simulations. The gas and water permeabilities of these nanotube-based membranes are several orders of magnitude higher than those of commercial polycarbonate membranes, despite having pore sizes an order of magnitude smaller. These membranes enable fundamental studies of mass transport in confined environments, as well as more energy-efficient nanoscale filtration.

"NanOasis proposes to utilize carbon nanotubes (CNTs) to make industrially-scalable reverse osmosis (RO) membranesWe target a ten-fold permeability increase compared to today's commercial state-of-theart, resulting in a 30-50% energy savings..."

Graphene for Desalination Membranes

Pentagon weapons-maker finds method for cheap, clean water By David Alexander

WASHINGTON | Wed Mar 13, 2013 1:15am EDT

WASHINGTON (Reuters) - A defense contractor better known for building jet fighters and lethal missiles says it has found a way to slash the amount of energy needed to remove salt from seawater....

Because the sheets of pure carbon known as graphene are so thin - just one atom in thickness - it takes much less energy to push the seawater through the filter with the force required to separate the salt from the water, they said.

The development could spare underdeveloped countries from having to build exotic, expensive pumping stations needed in plants that use a desalination process called reverse osmosis.

"It's 500 times thinner than the best filter on the market today and a thousand times stronger," said John Stetson, the engineer who has been working on the idea. "The energy that's required and the pressure that's required to filter salt is approximately 100 times less."

William Banholzer

Thermodynamics

Membrane Improvements

Thermal Desalination ~8-15 kWhr/m³ Current RO Energy Efficiency ~2 kWhr/m³ Theoretical Minimum Energy= 1.1 kWh/m³ (50% Recovery 3.5% salt) Ideal, Single Stage Energy Efficiency =1.56 kWh/m³

The Pepsi "Bio Bottle" Coke "Plant Bottle

On March 15, 2011, PepsiCo announced that it has developed the world's first PET plastic bottle made entirely from plant-based, fully renewable resources, enabling the company to manufacture a beverage container with a significantly reduced carbon footprint

Environment

•Cola Wars Revisited: Coke and Pepsi Duel Over Bottles Made from Plants •By: Nick Carbone

•Topics: <u>battle</u>, <u>Bottle</u>, <u>coke</u>, <u>ecofriendly</u>, <u>Environment</u>, <u>Pepsi</u>, <u>pet</u>, <u>plastic</u>

Read more: http://newsfeed.time.com/2011/03/26/cola-wars-revisited-coke-and-pepsi-duelover-bottles-made-from-plants/#ixzz1IZ6S6VeM

"By reducing reliance on petroleum –based materials and using its own agricultural scraps as feedstock for new bottles, this advancement should deliver a double win for the environment and PepsiCo."

Conrad Mackerron Senior Program Director, As You Sow

Bio PET

material	per capita consumption (lb/yr)
PET packaging	17
petroleum	6619
natural gas	8037
coal	6439
gasoline	2495
sand and gravel	13923
cement	512
iron ore	340
salt	403
beef	54.3
chicken	55.7

data from HIS, 2012 ERS USDA, 2011 National Mining Assoc., World Bank

Managing "Green" Fads – Green PET

S/MMBTU	\$/gal	cents/lb	cents/lb	\$/ton	\$/gal	cent/kwh	\$/gal	cents/lb	cents/lb
100		_				-			
-	-	-	200 -	2800 -	12 ⁻		0-	80-	100 ⁻
-	_	200 -	-	-	-	32	8	-	
-	-	-	-	-	-	-	-	-	
-	4.8 -	-	-	-	-	-	-	-	-
80 -	-	-	160 ⁻	-	-	_	-	-	80-
-	_	160	_	2100 -	9-	24-	6-	60	
-	_	-	-	-	-	- 24	0 -	-	
	36-	-	-	-	-	-	-		
60 _	5.0 -	-	120	-	-	-	-	-	60 -
-	-	120	-	-	-	-	-	-	-
-	-	-	-	1400 -	6^{-}	16-	4-	4 <mark>0⁻</mark>	-
-	-			-	-	-	- T	-	-
40	2.4	80-	80	-	-	-	-	-	40 -
-	-	00 -		-	-	-	77 -	-	
-	-		-	-	-	-		-	-
-	-			700 -	3 ⁻	18	2-	20 -	-
20	1.2	40	40 -	-			<u> </u>	-	20 -
			-	-		-	-	-	-
			-	-		-	-	-	-
	-	-	-		-	-	-	-	-
	_	_	-		_	-	_	_	-
Natural	Ethane	Ethylene	Polvethylene	Coal	Gasoline	Electricity	Ethanol	MEG	PET
Gas						(Industrial)			

USA

Sources:

Natural Gas, ethane, ethylene, polyethylene, gasoline, MEG, PET: CMAI Coal: EIA, Electricity: DOE, Ethanol US: ICIS, Ethanol Br: ESALQ Price Densities shown for Dec 2008 to Dec 2010 Prices shown from Dec 2010

William Banholzer

Brazil 🛛 Middle East

Managing "Green" Fads – Green PET

William Banholzer

UNIVERSITY OF WISCONSIN–MADISON

Green Design and LCA Rankings Don't Match Up

Biopolymers rank in the middle of LCA rankings

Polymer	Material	Green Design Rank	LCA Rank
Polypropylene	Fossil fuels	q	1
	Detrolour	5	-
HD Polyethylene	Petroleum	5	2
LD Polyethylene	Petroleum	7	3
Polyhydroxyalkanoate-Stover	Cornstalks	2	4
General Purpose Polystyrene	Petroleum	10	5
Polylactic Acid – NatureWorks	Sugar/cornstarch	1	6
PVC	Chlorine/petroleum	11	7
Polyhydroxyalkanoate-General	Corn kernels	2	8
Polylactic Acid-General	Sugar/cornstarch	4	9
PET	Petroleum	6	10
Polycarbonate	Petroleum	12	11
Bio-PET	Petroleum/plants	8	12

Tabone, MD; Cregg, JJ; Beckman, EJ; Landis, AE. Environ. Sci. Technol. 2010, 44, 8264-9

William Banholzer

UNIVERSITY OF WISCONSIN–MADISON

Chemical Industry is Rejuvenated

Impact of Low Gas Prices

Owen Kean and T.K. Swift, American Chemistry Council, "Industry-Transforming Natural Gas into Products", National Academy Forum on Unconventional Gas, 11 September 2012. Ethanol and Sugar from 10 Jan 2013 prices sugar is average of monthly close for 2011; EtOH is William Banheverage of daily close for 2011.

RSITY OF WISCONSIN–MADISON

Venture Model in Chemicals?

Where are the Facebook and Google of the Chemical Industry?

The Challenge of a New Company

Fraction of companies that survived after launch

Energy & chemical industries require very high reliability

Energy & chemical industries are extremely capital intensive

Failure has massive financial and social consequences

Source: Knaup, Amy E., May 2005, "Survival and longevity in the Business Employment Dynamics data," *Monthly Labor Review*, pp. 50–56; Knaup, Amy E. and MC. Piazza, September 2007, Business Employment Dynamics Data: Survival and Longevity, Monthly Labor Review, pp 3-10.

Scale of Fuels Makes it Harder

Sources: facebook original investment showing combined amounts from Peter Thiel (PayPal cofounder), Accel Partners and Greylock Partners as described in the History of facebook on wikipedia; Power Plants: RL34746 report - Stan Kaplan - Congressional Research Service; MTO: PEP Report 261 – SRI and EG: PEP Repor 2I – SRI; Revenues for Power Plants calculated using 2010 electricity average retail prices (all sectors) 9.88 cents/kWh (data from DOE)

William Banholzer

UNIVÉRSITY OF WISCONSIN–MADISON

Timeline for Impact

William Banholzer

Production, AEP Power Co, World Bank, EIA 2011 Energy Outlook, Electricity Market Module

Thank You

AICHE

VIEW THIS JOURNAL ONLINE AT WILEYONLINELIBRARY.COM

AIChE

WILEY

VERSITY OF WISCONSIN-MADISON

William Banholzer

The world aspires for sources of energy and product feedstocks that are 100% sustainable in adequate amounts to support a high standard of living for all. The question is whether these goals are practical.

Which new pathways and technologies will emerge to transform our situation? This question is addressed from the perspective of the chemical industry, which was built on oil, natural gas, and coal. These have served as the major raw material feedstocks and energy sources for driving reactions and separations. The industry is exploring new materials and solutions for energy supply and conversion.

Here we consider the mass and energy balances, capital investment, and resource requirements of several key alternative energy and feedstock technologies. These considerations determine where we can expect realistic progress toward sustainable chemistry in both the short and long term, and where we should place our investments.