

Challenges to Commercializing Technology in the Chemical Industry

William Banholzer ADHOC 2015

The World Needs Chemistry

Value of chemistry as % of all materials

Innovation

Rules for Business

Engineering Triumph

Moore's Law Sets Unrealistic Expectations

LDPE Cost Trend

Basic Raw Material Transformations

Technology is highly optimized

Relative Source of Profit

Top US Chemical Companies 1970

Rank '69 '68	Company	Chemi- cal sales (Millions	Total revenues ^a of dollars)	Chemical sales as per cent of total revenues	Com- pany SIC class.b	After-tax earnings (Millions of dollars)	Profit Rank marging '69 '68 TOTAL CO			Return on invest- ment ^o MPANIES	nk '68	
1 1	Du Ponti Bio	\$3220	\$3,655	88%	281	\$343.5	9.4%	4	3	5.6%	7	4
2 3	Union Carbide	1815	2,933	62	281	186.2	6.4	18	24	3.2	36	42
3-2-	Monsanto Bio/Rest.	1735	1,939	89	281	109.4	5.6	26	22	3.3	34	33
4 4	Dow Chemical	1570	1,876	84	281	148.7	7.9	10	12	4.7	15	19
57	-Gelanese		1 , 2 50	82	- 281 -	7 6 3	6.1	-22-	34	3.8	29	-45
6 5	W. R. Grace	1015	1,812	56	281	51.0	2.8	45	45	2.8	40	4:
7 6	Standard Oil (N.J.)	1004	16,900	6	291	1243	7.4	12	9	5.1	11	-
8 8	Allied Chemical	895	1,316	68	281	68.0	5.2	30	46	2.7	41	- 40
9 9	Hercules	642	746	86	281	43.9	5.9	24	14	4.1	26	17
10 11	Occidental Petroleum	625	2,059	30	509	174.8	8.5	7	14	7.3	3	
11 10	FMC	620	1,409	44	-281	67.3	4.8	32	29	5.0	13	6
12 12	American Cyanamid	576	1,067	53	281	89.9	8.3	8	-5	6.2	- 6	_
13 13	Shell Oil	544	4,276	13	291	291.2	6.8	15	10	4.2	21	18
14 14	Eastman Kodak	522	2,747	19	383	401.1	14.6	1	1	10.5	-1	
15 16	Uniroyal	513g	1,554	33	301	46.6	3.0	44	40	2.7	41	3:
16 15	Stauffer Chemical	499	499	100	281	31.6	6.5	17	17	7.2	4	
17 -17 -	- Phillips Petroleum	471 -	2,227	21	- 29 1	134.3	6.0 -	-23	19-	3.2 -	- 36	3
18 18	Rohm and Haas	448	453	99	281	33.5	7.4	12	8	4.8	14	-
19 19	Mobil Oil	444	7,573	6	291	434.5	5.7	25	22	4.4	17	- 2

74

23

33.0

127.2

52.3

281

517

1,595

1,151

Borden

21 26

22 20

Ethyl Corp.

Cities Service

Diamond Shamrock

Ashland Oil

Time to Realize Materials Benefits

Revenue evolution to peak and beyond for various industries

Aerospace (new aircraft platform)

Materials/chemicals (new product launch)

Time and Risk Matrix

Low

Product-line extensions into new markets

Success rate: 30-40%

Time to commercialization:

2–7 years (average 5)

Average IRR 20-25%

New-product launches in new markets

Success rate: 15-20%

Time to commercialization:

8–19 years (average 14)

Average IRR 8-12%

Degree of Market Familiarity

Product-line extensions into existing markets

Success rate: 40-50%

Time to commercialization:

2-5 years (average 4)

Average IRR 18-23%

New-product launches in existing markets

Success rate: 30-40%

Time to commercialization:

6-15 years (average 11)

Average IRR 13-18%

High

Degree of Technology Familiarity

Low

New Technology Risk > New Market Risk

High

Timeline to Innovate

The Trouble With Averages ...

NPI Analysis

Innovation Failure Modes

Failure Modes- Value Proposition

1-Fads

Non Sustainable Trends- often with poorly formulated value proposition, or incomplete analysis.

Symptom:

"Every one of our competitors is starting"

"This was used before but times have changed"

Example:

Biofuels

Biomaterials

Hype Around Cleantech

Ivy League Brains Figure Out How to Make Biodegradable Plastic from Greenhouse Gases

September 28, 2012

cleantechnica.com

Two graduates from Princeton University and Northwestern University have developed a process for converting greenhouse gases from sewage treatment plants, landfills, and power plants into a biodegradable plastic called Airflex™

As described by Newlight, the process for making Airflex ™ breaks down into a few simple steps. First, a mix of gases, including methane and carbon dioxide, is funneled into a reactor. Next, carbon and oxygen are separated out, and then they are reassembled into a long-chain thermopolymer.

September 25, 2012

presswire.com

"We are pleased to receive this seventh patent," stated Newlight CEO, Mark Herrema. "While the size of our patent portfolio is a testament to Newlight's pioneering inventions and nearly decade-long leadership in this field, we expect our patent portfolio to continue to grow at a rapid pace, particularly in the areas of new product applications and commercial-scale manufacturing systems."

Permanent Exhalation Conveyance

Failure Modes – Value Proposition

2-Risk Disequilibrium

Benefits of new material < Risk of end product

Corollary Benefit of new process < Risk of process failure

Symptom:

"The customer doesn't understand the benefits we can generate."

"Their Testing in Ridiculous"

Example:

Carbon Fiber in Plane Fuselage:

1960 CF Developed 1980's Initial components 1990's Primary Structures:

Challenging Entry Segments: automotive, safety equipment, in body devices, primary aerospace components:

Failure Modes -Value Proposition

3-Inadequate Segmentation:

Belief New Product Widely Applicable

Corollary: Neglect tangential process considerations

Symptom:

"This will completely replace all"

Examples:

BioPlastics
CLF/LED Light bulbs

Failure Modes- Value Proposition

4-Panacea Illusion- Failure to appreciate alternatives

Belief New Material's Properties Totally Disruptive

Symptom:

"Our Material has such superior XXX"

Examples:

HDPE

Nano materials

Failure Modes- Value Chain Issue

5-Value Chain Resistance Complexity - Losers

Existing Value Chains are entrenched and the losers don't just capitulate.

Symptom:

"The existing value chain can't compete."

"Current Suppliers and Customers will have no choice"

Examples:

PCV pipe

BPA can coatings

PC window Glazing

Value Chain Resistance- e.g. PVC

PVC pipe sales took nearly 15 years to reach reasonable volume.

Value Chain Resistance e.g. BPA Can Coating

Formulated Coating

Can Manf.

Can Coating
Formulators
discourage
disruption in existing
products/value chain

Value Chain Resistance e.g. PC Glazing

- Design
- System Cost
- Scratch

Failure Modes Value Chain Issue

6-Drop In Solutions

Material will "drop in" to existing process/market

Symptom:

"Nothing will have to change."

Examples:

Plastics Body panels Composite Auto Parts.

Failure Modes

7-Single Customer NPI

New Product Effort Based on Single Customer Input

Symptom:

"XXX is the market leaders and will drive market adoption."

Examples:

Rubbermaid Food Storage

Market-Back Example

What Not To Do...

Rubbermaid initial CTQs:

- Clarity quality image
- Stain resistance
- Food contact approved
- Dampened / "rugged" sound
- High flow for thin-walled lids & bowls

This project was:

- #1 Rubbermaid program
- Large Add Spend
- Proprietary product
- But it failed!!!

Single Customer CTQs – Use Extreme Caution

Venture Model in Chemicals?

Where are the Facebook and Google of the Chemical Industry?

Scale of Fuels/Chemicals Makes it Harder

Sources: facebook original investment showing combined amounts from Peter Thiel (PayPal cofounder), Accel Partners and Greylock Partners as described in the History of facebook on wikipedia; Power Plants: RL34746 report - Stan Kaplan - Congressional Research Service; MTO: PEP Report 261 – SRI and EG: PEP Report 2I – SRI; **Revenues** for Power Plants calculated using 2010 electricity average retail prices (all sectors) 9.88 cents/kWh (data from DOE)

The Challenge of a New Company

Fraction of companies that survived after launch

Energy & chemical industries require very high reliability

Energy & chemical industries are extremely capital intensive

Failure has massive financial and social consequences

Single Customer vs. Market Driven Programs

Single Customer

Market Driven

- Speed to market
- > CTQs easily defined
- > Easier to predict returns
- Customer credibility

- Potential weaker IP
- Customer IP limits growth potential

- > Broader reach
- Potential stronger IP
- Independent of customer disengagement
- > Industry credibility

- ➤ Potential slow adoption
- > Complex CTQs

Thank You